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Abstract: Durability of concrete is defined as its ability to resist any form of deterioration, 

allowing it to retain its original form and quality after exposure to the environment of its 

intended use. Permeability is the most important aspect of durability and service lives of 

concrete structures, and is measured by the ease with which a gas or liquid can get into and 

pass through concrete, or rate at which water under pressure can flow through interconnected 

voids within concrete. It has been suggested that pozzolanic reactions from Supplementary 

Cementitious Materials (SCMs) help in filling up pores using the Calcium Silicate Hydrate 

(C-S-H) gel that is formed during the secondary hydration of cement, through the reaction of 

calcium hydrixide [Ca(OH)2] with silicon dioxide (SiO2), which densifies the pore structure 

and transition zone, thereby reducing permeability from the packing effect of unreacted 

particles. This work investigated the water absorption performance of Corncob Ash (CCA), 

Anthill Soil (AHS) and Rice Husk Ash (RHA) concrete specimens. Tests were conducted on 

specimens that were found to have achieved the highest compressive strengths from strength 

tests and also on specimens that were made out of 30% (per cent) cement replacements. 

Results indicated that the water performance of all the three materials, including that of the 

ternary specimens of CCA and AHS were above those of the control specimens at highest 

compressive strength, and highlight the potential of using CCA, AHS and RHA at lower 

replacements to improve the durability of concrete. 
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INTRODUCTION AND BACKGROUND 

Durability of concrete is defined as its ability to resist any form of deterioration, allowing it 

to retain its original form and quality after exposure to the environment of its intended use [1, 

2]. Permeability is the most important aspect of durability and service lives of concrete 

structures [3-5]. It is measured by the ease with which a gas or liquid can get into and pass 

through concrete as is shown in figure 2.12, or rate at which water under pressure can flow 

through interconnected voids within concrete [4, 6-8]. 
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Figure 1. A highly permeable concrete readily allows water in and through it 
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resisting water absorption. This work investigated the water absorption of CCA, AHS and 

RHA at two different levels of replacement.    

METHODS 

Compressive tests were carried out on CCA, AHS, and ternary specimens of CCA and AHS 

at replacements by weight of cement of 0% (per cent), 7.5%, 10%, 15%, 20%, 25% and 30%. 

Due to a high water demand, RHA was replaced by the volume of cement using the same 

replacement steps. The 0% replacement, also referred to as the control in this work was used 

as the point of reference from which performances were measured [1]. The water absorption 

test was conducted to BS EN 772-11 [31] on two different sets of specimens. The first set 

was one which had achieved the highest compressive strengths, from the argument by Arya 

[7] and Neville and Brooks [4] that durability is directly proportional to the compressive 

strength of concrete, while the second set was one that had made out of 30% cement 

replacements, which was the highest replacement level for the study. The highest 

compressive strengths had been recorded on the 7.5% CCA, 7.5% AHS, 7.5% RHA and 5% 

ternary CCA and AHS. The apparatus were a water tank fitted with a supporting device, stop 

watch, ventilated oven capable of maintaining a temperature of 70
0 

C ± 5
0 

C and a weighing 

instrument capable of measuring to an accuracy of 0.1% of a gram (g). The test specimens 

were cured in water for 270 days after which they were dried to a constant mass in the 

ventilated oven at a temperature of 70
0 

C ± 5
0 

C. They were then allowed to cool down at 

room temperature and the dimensions to be immersed were taken conforming to BS EN 772-

16 [32] . The gross area was calculated before the test specimens were immersed in water to a 

depth of 5mm for a total immersion time of 10 minutes conforming to BS EN 772-11 [31]. 

The results were calculated using [3.3] conforming to BS EN 772-11 [31] 

                                        Cw.s =(Mso.s-Mdry.s/As.t so) x 10
6
 [g/(m

2
.s)]                                        [1] 

Where Cw.s is the coefficient for water absorption, Mdry.s is the mass in grams (g) of the 

specimen after drying, Mso.s is the mass in grams of the specimen after soaking for time (t), 

As is the gross area in square millimetres (mm
2
) of the face of the specimen immersed in 

water and tso is the time of soaking in seconds (s) 

RESULTS AND DISCUSSIONS 

Table 1 and Figure 2 represent results of the coefficient of water absorption in grams 

obtained from specimens at replacements that were found to have achieved highest 

compressive strengths and also at 30% cement replacements. Results showed that at highest 

compressive strengths, all SCM replaced specimens achieved lower coefficients of water 
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absorption than those of the control specimens. For highest replacement levels, the specimens 

of CCA, AHS, ternary CCA and AHS and RHA showed higher coefficients of water 

absorption than those of the control specimens, with CCA showing the worst performance.  

 

Table 1. Coefficient of water absorption at replacements that achieved the highest 

compressive strengths and at 30% cement replacements [Cw.s (g/m
2
.s)]. 

Specimens at highest 

compressive strengths 

Cw.s 

(g/m
2
.s) 

30% replacement 
Cw.s 

(g/m
2
.s) 

Control 0.5767 Control 0.5767 

7.5% CCA 0.5317 30% CCA 1.3025 

7.5% AHS 0.4492 30% AHS 0.5867 

2.5% CCA + 2.5% AHS 0.4358 15% CCA + 15% AHS 0.8342 

7.5% RHA (by volume) 0.5075 30% RHA (by volume) 0.7583 

 

Low permeabilities of SCMs have been attributed to their hydration products precipitating in 

the small spaces between cement particles, blocking pores and resulting in a refined pore 

structure and reduced number of pores [13, 17, 33-39]. By the pozzolanic activity, SiO2 in 

SCMs reacts with water and Ca(OH)2 to form a foil-like C-S-H gel, that inhibits bleeding by 

filling capillary channels and voids which were occupied by water and water-soluble lime, 

resulting in a denser concrete with low permeability [3, 17, 20, 35, 40-43]. The coefficient of 

water absorption of CCA specimens at 7.5% replacement was lower than that of the control 

specimens by 8% but was 126% higher at the 30% replacement. These results were consistent 

with those of Adesanya and Raheem [1], who reported a decrease in permeability of between 

1.5% and 34.4% at CCA replacements of between 2% and 15% but not consistent with 

Udoeyo and Abubakar [30] that the control specimens were superior to all CCA specimens at 

all levels of replacement in resisting water absorption. 
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Figure 2. Coefficient of water absorption at replacements that achieved highest compressive 

strengths and at 30% replacements [Cw.s (g/m
2
.s)] 

 

For AHS specimens, the coefficient of water absorption was 22% lower and 2% higher than 

that of the control specimens at the 7.5% and 30% replacements respectively, while for the 

ternary specimens of CCA and AHS, a water absorption reduction of 24% and an increase of 

45% at the 5% and 30% replacements respectively was observed. AHS appeared to reduce 

the permeability of CCA at both replacements consistent with Bapat [17], Le and Ludwig 

[25], Kannan and Ganesan [44], Nehdi, et al. [45], Sathawane, et al. [46], Güneyisi and 

Gesoğlu [47], Rao, et al. [48], Poon, et al. [49], Khatib and Hibbert [50] that SCMs used 

together in concrete can improve each other’s properties. For the RHA specimens, a 

reduction of 12% was recorded at the 7.5% replacement. These findings are consistent with 

Bapat (2012), Le and Ludwig (2013) and James and Rao (1986), who reported that 

amorphous silica in RHA reacts at latter ages with the Ca(OH)2 that is produced during the 

hydration of cement in early ages to form strength giving C-S-H, which also improves the 

microstructure of the cement matrix by filling in the capillary pores. However, at the 30% 

replacement, the coefficient of water absorption of RHA was 31% higher than that of the 

control. The high coefficients of water absorption at higher SCM replacements was attributed 

by Adesanya and Raheem [1] to reduced levels of Ca(OH)2 that is available to react with 

excess SCMs to form the foil like C-S-H that results in a less well-interconnected capillary 
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pore structure, thereby leading to the creation of pores and consequently increasing water 

absorption. From the evidence obtained by this research, it can be concluded that CCA, AHS 

and RHA reduced the water absorption of concrete at highest compressive strengths, but 

increased it at the higher replacement. These findings highlight the potential of using CCA, 

AHS and RHA them at lower replacements to improve the durability of concrete. 

CONCLUSION 

This work investigated the water absorption performance of Corncob Ash (CCA), Anthill 

Soil (AHS) and Rice Husk Ash (RHA)-replaced concrete on specimens which, were found to 

have achieved the highest compressive strengths as well as on specimens that were made out 

of 30% cement replacements. Results indicated that the water performance of all the three 

SCMS, including that of the ternary specimens of CCA and AHS were above those of the 

control specimens at highest compressive strength, but were below the control at 30% 

replacements. The findings highlight the potential of using CCA, AHS and RHA at lower 

replacements to reduce the permeability of concrete and consequently improve its durability. 
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