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Introduction 

 Resistance in parasitic worms is increasing at such an alarming rate that many drugs 

will soon be rendered useless to the livestock industry (Sangster, 2001). It is therefore not 

surprising that genome projects on parasitic organisms are now abundant in the hope that new 

methods for the control of parasites will be forthcoming. The advent of ‘affordable’ post-

genomic technology has opened up a world of proteomic, transcriptomic and metabolomic 

methodologies that have been utilized to examine the host’s response to parasitic infections 

(peacock, 2010). There is no doubt the era of the “omics” is with parasitology, and current 

trends in the discipline are addressing fundamental biological questions that can make best 

use of the new technologies, as well as the vast amount of new data being generated (Ellis  et 

al., 2003). ‘Omics’ projects along with Ingenuity (http://www.ingenuity.com) which was a 

Pathway analysis tool together provided indepth insights into various types of parasitic 

complex immune responses. 

PARASITE TRANSCRIPTOME ANALYSES  

 mRNA of the parasitic organisms were defined by techniques such as differential 

display (Lau et al., 2000; Cui et al., 2001) and serial analysis of gene expression (Patankar et 

al., 2001) which have played a role in gene discovery. Clustering of expressed sequence tags 

(ESTs) and the generation of a consensus sequence for each cluster, greatly facilitates the 

ease by which data can be rapidly assembled to generate a complete gene sequence (Lawson, 

1999). It is interesting to note that many of the abundant ESTs of Apicomplexa encode 
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antigens that have been well characterized in the past (Table No. 1) such as those found in the 

micronemes, dense granules, and rhoptries (Ellis et al., 2003). Similarity between different 

parasitic genome sequences can be detected by algorithms like BLAST inaddition to 

searching in “Genbank” sequence datasets. 

Table 1: Representing few of the expressed sequence tags (ESTS) in three coccidian species 

(Courtesy: http://ParaDB.cis.upenn.edu) 

Toxoplasma gondii  Neospora caninum  Eimeria tenella 

GRA7  GRA2 Antigen 

GRA1  GRA7 Actophorin 

GRA2  

 

Uncharacterized cluster 

(neo_566) 

Serine protease inhibitor 

GRA6 MIC1 Uncharacterized cluster 

(Ceimqual_264) 

P22  

 

Uncharacterized cluster 

(neo_617) 

MIC1 

P30 GRA1 Uncharacterized cluster 

(Ceimqual_287) 

HSP30  MIC10 

 

Uncharacterized cluster 

(Ceimqual_521) 

NTPase  P38 Uncharacterized cluster 

(Ceimqual_1487) 

Uncharacterized cluster 

(Ctoxoqual4_276)  

SUL1 Uncharacterized cluster 

(Ceimqual–953) 

GRA5  Uncharacterized cluster 

(neo_824) 

Uncharacterized cluster 

(Ceimqual–926) 

GRA8  MIC6 Uncharacterized cluster 

(Ceimqual_758) 

Uncharacterized cluster 

(toxoqual4_4452)  

Uncharacterized cluster 

neo_287) 

Uncharacterized cluster 

(Ceimqual_161) 

 

Microarrays 

 Expression profiling by microarray analyses (Cummings and Relman, 2000; Rathod 

et al., 2002) has been reported from a small number of taxa (Cleary et al., 2002) which will 

gain popularity in parasitology sector as the availability of resources will increase. Such 

studies are proving important in raising and testing hypotheses on the developmental biology 

of parasites, and the signalling pathways that control them (Ellis et al., 2003). Microarray 

enables to identify study the genes which are underexpressed or either overexpressed under 

experimental conditions. Depending on the experimental objective, different types of data 

analyis can be used.  

 Microarrays are also being used to investigate changes in gene expression of host 

cells during parasite infection to investigate host response mechanisms (Blader et al., 2001). 
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For example, the host’s immune response to Neospora infection in cattle was investigated 

using mouse cDNA microarrays (Peacock, 2010). Real-time quantitative RT-PCR analyses, 

using fluorogenic 59 nuclease assays, or Taqman, is typically used to confirm and quantify 

gene expression levels (Blair et al., 2002). 

PARASITE GENOME SEQUENCING  

 The approaches being adopted are similar in structure for each, concentrating on 

sequence assembly from whole genome shotgun sequencing approaches (Gardner, 2001). 

Initially, parasite genome sequencing began on a chromosome by chromosome basis, with 

different groups taking responsibility for individual chromosomes (Bowman et al., 1999). 

However, the power of shotgun sequencing realistically has made approaches based on 

individual chromosomes redundant for protozoa and more dependent on the tools of 

bioinformatics for compiling and annotating the genome sequences generated (Ellis et al., 

2003). Several genomic projects which were conducted by Sanger Centre (U.K.) and TIGR 

(The Institute for Genome Research -USA) were represented in Table No. 2. Genomic survey 

of Schisotosoma mansoni is still under process. 

Table 2: representing parasitic genomic projects conducted by Sanger Centre (U.K.) and 

TIGR (Ellis et al., 2003) 

Species Number of 

chromosomes, 

genome size 

Species (Mb) 

Comments Useful Web-sites 

Plasmodium 

falciparum 

14, 30 whole 

genome 

www.plasmodb.org 

 

Theileria 

annualata 

4, 10 whole 

genome 

www.sanger.ac.uk/Projects 

Toxoplasma 

gondii 

11, 80 whole 

genome 

http://ToxoDB.org/ToxoDB.shtml 

Eimeria 

tenella 

14, 60 whole 

genome 

www.sanger.ac.uk/Projects 

Trypanosom

a cruzi 

35, 40 Partial 

genome 

www.dbbm.fiocruz.br/genome/tcr

uzi/tcruzi.htm 

Leishmania 

major 

36, 33.6 whole 

genome 

www.genedb.org 

Entamoeba 

histolytica 

18, 20 whole 

genome 

www.nematode.net/ 

 

COMPARATIVE GENOMICS 

 This methodology aids in the identification of homologous genes amongst species 

(Thompson et al., 2001). Comparisons of parasite genomes from closely related species is 
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now providing valuable information not only on genome organization but also on gene 

function (Thompson et al., 2001; Waters, 2002). For example, eventhough N. Caninum and 

T. gondii are closely related species; information regarding N. Caninum was scanty. Genomic 

sequencing of N. Caninum and its comparison to T. gondii, aids in knowing information 

regarding the organism. Although there is much to learn about the H. contortus organism 

(genome, gene expression and protein function), many assumptions about its physiological 

and metabolic processes were obtained from the model organism Caenorhabditis elegans 

(Peacock, 2010). 

PARASITE PROTEOME ANALYSES  

 The key technologies behind the core of proteome analyses, namely two-dimensional 

gel electrophoresis  and mass spectroscopy and data base searching, have been described in 

detail elsewhere (Ashton et al., 2001). Recently, large-scale analyses on parasite proteomes 

have been reported (Jefferies et al., 2001; Cohen et al., 2002). Identifying immunogenic 

proteins that elicit protective responses in resistant animals can also help identify potential 

vaccine candidates (Peacock, 2010). For example, Glycosylphosphatidylinositols have been 

extensively studied in protozoa for their role as membrane anchors and in cell signalling 

(Schofield and Tachado, 1996), and more recently their role in activating a Toll-like receptor 

recognition system may have important implications for vaccine design (Campos et al., 

2001). Categorization of parasitic proteomes based on their function can be done by Parasite 

Proteome Server 

IDENTIFICATION OF NEW DRUG TARGETS 

 Investigations into the genomes of parasitic protozoa have also identified many new, 

potentially exciting targets for chemotherapeutic treatment, such as enzymes of folate 

metabolism, the mannitol cycle, and polyamine biosynthesis, for example (Coombs and 

Muller, 2002). For example, genomic characterization of the apicoplast which is essential for 

parasite survival (Ralph et al., 2001) can be selectively targeted by drugs like Ciprofloxacin 

(Fichera and Roos, 1997). The identification of the shikimate pathway in Apicomplexa is also 

worth noting, since this pathway is missing in mammals and is a target for herbicides in 

plants (Roberts et al., 2002). Glyphosphate, which targets 5 enolpyruvyl shikimate 3- 

phosphate synthase, shows antiparasitic activity (Roberts et al., 1998). 

 Still, very little information is known regarding metabolic pathways of parasites 

implying that further research is required and it is highly likely that new drug targets will be 

identified in the future (Fairlamb, 2002). 
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