PHYTOCHEMICAL SCREENING OF HERBS USED IN THE PRESERVATION OF RAW MILK

G.M. Sivakumar*

*Associate Professor
Department of Livestock Farm Complex, Veterinary College and Research Institute,
Tirunelveli- 627 358
Tamil Nadu Veterinary and Animal Sciences University
E-mail: drshiva06@gmail.com (*Corresponding author)

Abstract: A study was carried out to assess the phytochemical properties of betel and tulsi leaf extract used in preservation of milk. Fresh betel (Piper betel Linn) and tulsi (Ocimum sanctum) leaves were procured from the local market in Chennai. Phytochemical screening was carried out in which betel leaf extract showed the presence of flavonoids, tannins and phenolic compounds and tulsi leaf extract showed presence of glycosides, phytosterols, tannins and phenolic compounds. Phenols and polyphenols are water soluble compounds which can be easily mixed with milk. Phenolic compounds present in these leaf extracts possess of antimicrobial and antioxidant activity and can be used for increasing the shelf life of milk.

Keywords: Betel, tulsi, Phytochemical, antimicrobial, antioxidant.

Introduction

Piper betel Linn (Piperaceae) leaves is widely used as a post meal mouth freshener and the crop is extensively grown in India, Sri Lanka, and other Southeast Asian countries. Betel is an evergreen dioecious herb that needs warm and moist growth conditions for its growth Arani Datta et al. (2011). Piper betel contains a wide variety of biologically active compounds whose concentration depends on the variety of the plant, season and climate. Currently there is a growing interest to use natural antibacterial compounds like extracts of herbs and spices for the preservation of food (Smid and Gorris, 1999). The mode of action of natural preservatives is inhibition of microbial growth, oxidation and certain enzymatic reactions occurring in milk. Tulsi (Ocimum sanctum) is a aromatic plant which has medicinal properties (Singh et al.2012). It contains several phyto-constituents such as eugenol, cubenol, borneol, vallinin (Kadian and Parle, 2012) due to which it posses antibacterial, antiviral, antifungal, antioxidant properties (Cohen, 2014). In the present study phytochemical analysis of betel and tulsi leaf extract was carried out to assess the suitability in preservation of milk.

Received May 3, 2020 * Published June 2, 2020 * www.ijset.net
Materials and Methods

Fresh betel (*Piper betel* Linn) and Tulsi (*Ocimum sanctum*) leaves procured from the local market in Chennai. The leaves were shade dried and powdered as per the method of Preethi *et al.* (2010). Three grams of powder was dissolved in 20 ml of distilled water, boiled and cooled and then filtered through whatman No.1 filter paper. The extracts were subjected to phytochemical analysis for the presence of carbohydrates, glycosides, fixed oils, protein, saponins, tannins, phenolic compounds, phytosterols, alkaloids and flavonoids as per the method described by Trease and Evans, (2002).

Carbohydrates

Two ml of extract was dissolved in 4 ml of distilled water and filtered. The filtrate was subjected to the following tests to detect the presence of carbohydrates and glycosides.

Molish test

One ml of the filtrate was treated with 2 to 3 drops of Molish reagent and 2 ml of concentrated sulphuric acid was added along the sides of the test tube. Appearance of brown ring at the junction of two liquids showed the presence of carbohydrates.

Glycosides

Two ml of extract was hydrolyzed with dilute hydrochloric acid for 10 minutes in a water bath at 37 °C and hydrolysate was subjected to the following test to detect the presence of glycosides.

Borntrager’s test

Two ml of the hydrolysate was treated with chloroform and the chloroform layer was separated. To this equal volume of dilute ammonia solution was added. Appearance of pink colour on the ammonia layer indicates presence of glycosides.

Detection of fixed oils

0.5 ml of the extract was pressed between the filter paper. Appearance of oil stain on the paper indicates the presence of fixed oils.

Detection of protein

Two ml of the extract was treated with Ninhydrin reagent and appearance of purple colour indicates the presence of proteins.

Detection of saponins

Four ml of the extract was diluted with 20 ml of distilled water and was agitated in a measuring cylinder for 15 minutes. The formation of 1 cm layer of foam shows the presence of saponins.
Detection of tannins and phenolic compounds
Two ml of extract was taken and equal volume of water was added and tests for the presence of phenolic compounds and tannins were carried out with the following reagent. 5 per cent ferric chloride solution was added to 2 ml of the above solution. A violet colour indicates the presence of phenolic compounds and tannins.

Detection of phytosterols
Two ml of extract was dissolved in 5 ml of chloroform. Then this chloroform solution was subjected to the following test to detect the presence of phytosterols.

Salkowski test
To 1ml of above chloroform solution, few drops of concentrated sulphuric acid was added. Appearance of brown colour indicates the presence of phytosterols.

Detection of alkaloids
Two ml of extract was treated with few drops of dilute hydrochloric acid and filtered then the following tests were carried out.

Mayer’s test
To 1ml of the filtrate, few drops of Mayer’s reagent was added. Cream coloured precipitate indicates the presence of alkaloids.

Detection of flavonoids
Two ml of extract was dissolved in sodium hydroxide solution. Appearance of yellow colour indicates the presence of flavanoids.

Results and Discussion
Table 1 shows the results of the phytochemical analysis of the herbs betel and tulsi. On phytochemical screening of herbs, it was found that tannins, phenolic compounds and flavonoids were present in betel leaves extract which correlates with the findings of Chaurasia et al. (2010). Phenols and polyphenols are water soluble compounds which can be easily mixed with milk. Phenolic compounds present in the betel leaf extracts possess broad spectrum of antimicrobial activity (Chandra et al., 2012). Phenolics are the major contributor of antioxidant activity in plant extracts due to their higher value in total content (Hodzic et al.,2009), The use of plant extracts as a source of phenols is preferred as a natural method of preservation (Gad and Salam, 2010).

Likewise, tulsi leaves extract contained glycosides, tannins, phenolic compounds, phytosterols and alkaloids which coincides with the findings of (Joshi et al., 2011; Shafqatullah et al., 2013). Jeyaseelan et al. (2010) reported that water extracts of Ocimum
sancrum contain glycosides, saponins, flavonoids and ethanolic extracts contains tannins, alkaloids, glycoside and flavonoids. Many herbs and spices extracts contained high levels of phenols and exhibited antibacterial activity against food borne pathogens. Antibacterial substances can easily destroy the bacterial cell wall and cytoplasmic membrane resulting in a leakage of the cytoplasm. (Shan et al., 2007).

Conclusion

In this present study it was concluded that betal leaf extract contains flavonoids, tannins and phenolic compounds and tulsi leaf extract showed presence of glycosides, phytosterols, tannins and phenolic compounds. These extracts possess antimicrobial and antioxidant activity and can be used in the preservation of milk.

References

Phytochemical Screening of Herbs Used in The Preservation of Raw Milk

Table - 1

Phytochemical screening of the herbs

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Constituents</th>
<th>Betel</th>
<th>Tulsi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alkaloids</td>
<td>-ve</td>
<td>+ve</td>
</tr>
<tr>
<td>2</td>
<td>Carbohydrates</td>
<td>+ve</td>
<td>-ve</td>
</tr>
<tr>
<td>3</td>
<td>Fixed Oils</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>4</td>
<td>Flavonoids</td>
<td>+ve</td>
<td>-ve</td>
</tr>
<tr>
<td>5</td>
<td>Glycosides</td>
<td>-ve</td>
<td>+ve</td>
</tr>
<tr>
<td>6</td>
<td>Phytosterols</td>
<td>-ve</td>
<td>+ve</td>
</tr>
<tr>
<td>7</td>
<td>Protein</td>
<td>+ve</td>
<td>-ve</td>
</tr>
<tr>
<td>8</td>
<td>Saponins</td>
<td>-ve</td>
<td>-ve</td>
</tr>
<tr>
<td>9</td>
<td>Tannins and Phenolic compounds</td>
<td>+ve</td>
<td>+ve</td>
</tr>
</tbody>
</table>

@ Average of six trials